
Node.js is a very powerful JavaScript-based framework/platform built on

Google Chrome's JavaScript V8 Engine. It is used to develop I/O intensive

web applications like video streaming sites, single-page applications, and

other web applications. Node.js is open source, completely free, and used

by thousands of developers around the world.

Audience
This tutorial is designed for software programmers who want to learn the

basics of Node.js and its architectural concepts. This tutorial will give you

enough understanding on all the necessary components of Node.js with

suitable examples.

Prerequisites
Before proceeding with this tutorial, you should have a basic understanding

of JavaScript. As we are going to develop web-based applications using

Node.js, it will be good if you have some understanding of other web

technologies such as HTML, CSS, AJAX, etc.

Execute Node.js Online
For most of the examples given in this tutorial, you will find a Try it option,

so just make use of this option to execute your Node.js programs on the

spot and enjoy your learning.

Try the following example using the Try it option available at the top right

corner of the below sample code box (on our website):

/* Hello World! program in Node.js */

console.log("Hello World!");

What is Node.js?
Node.js is a server side platform built on Google Chrome's JavaScript

Engine (V8 Engine). Node.js was developed by Ryan Dahl in 2009 and its

latest version is v0.10.36. The definition of Node.js as supplied by its official

documentation is as follows −

http://nodejs.org/
http://nodejs.org/

Node.js is a platform built on Chrome's JavaScript runtime for easily building fast and

scalable network applications. Node.js uses an event-driven, non-blocking I/O model

that makes it lightweight and efficient, perfect for data-intensive real-time applications

that run across distributed devices.

Node.js is an open source, cross-platform runtime environment for

developing server-side and networking applications. Node.js applications

are written in JavaScript, and can be run within the Node.js runtime on OS

X, Microsoft Windows, and Linux.

Node.js also provides a rich library of various JavaScript modules which

simplifies the development of web applications using Node.js to a great

extent.

Node.js = Runtime Environment + JavaScript Library

Features of Node.js
Following are some of the important features that make Node.js the first

choice of software architects.

 Asynchronous and Event Driven All APIs of Node.js library are asynchronous

that is, non-blocking. It essentially means a Node.js based server never waits

for an API to return data. The server moves to the next API after calling it and a

notification mechanism of Events of Node.js helps the server to get a response

from the previous API call.

 Very Fast Being built on Google Chrome's V8 JavaScript Engine, Node.js library

is very fast in code execution.

 Single Threaded but Highly Scalable - Node.js uses a single threaded model

with event looping. Event mechanism helps the server to respond in a non-

blocking way and makes the server highly scalable as opposed to traditional

servers which create limited threads to handle requests. Node.js uses a single

threaded program and the same program can provide service to a much larger

number of requests than traditional servers like Apache HTTP Server.

 No Buffering - Node.js applications never buffer any data. These applications

simply output the data in chunks.

http://code.google.com/p/v8/

 License - Node.js is released under the MIT license.

Who Uses Node.js?
Following is the link on github wiki containing an exhaustive list of projects,

application and companies which are using Node.js. This list includes eBay,

General Electric, GoDaddy, Microsoft, PayPal, Uber, Wikipins, Yahoo!, and

Yammer to name a few.

 Projects, Applications, and Companies Using Node

Concepts
The following diagram depicts some important parts of Node.js which we

will discuss in detail in the subsequent chapters.

Where to Use Node.js?
Following are the areas where Node.js is proving itself as a perfect

technology partner.

 I/O bound Applications

 Data Streaming Applications

https://raw.githubusercontent.com/joyent/node/v0.12.0/LICENSE
https://github.com/joyent/node/wiki/projects,-applications,-and-companies-using-node

 Data Intensive Real time Applications (DIRT)

 JSON APIs based Applications

 Single Page Applications

Where Not to Use Node.js?
It is not advisable to use Node.js for CPU intensive applications.

Try it Option Online

You really do not need to set up your own environment to start learning Node.js.

Reason is very simple, we already have set up Node.js environment online, so that you

can execute all the available examples online at the same time when you are doing

your theory work. This gives you confidence in what you are reading and to check the

result with different options. Feel free to modify any example and execute it online.

Try following example using Try it option available at the top right corner of the below

sample code box:

/* Hello World! program in Node.js */

console.log("Hello World!");

For most of the examples given in this tutorial, you will find Try itoption, so just make

use of it and enjoy your learning.

Local Environment Setup
If you are still willing to set up your environment for Node.js, you need the

following two softwares available on your computer, (a) Text Editor and (b)

The Node.js binary installables.

Text Editor
This will be used to type your program. Examples of few editors include

Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems.

For example, Notepad will be used on Windows, and vim or vi can be used

on windows as well as Linux or UNIX.

The files you create with your editor are called source files and contain

program source code. The source files for Node.js programs are typically

named with the extension ".js".

Before starting your programming, make sure you have one text editor in

place and you have enough experience to write a computer program, save

it in a file, and finally execute it.

The Node.js Runtime
The source code written in source file is simply javascript. The Node.js

interpreter will be used to interpret and execute your javascript code.

Node.js distribution comes as a binary installable for SunOS , Linux, Mac OS

X, and Windows operating systems with the 32-bit (386) and 64-bit

(amd64) x86 processor architectures.

Following section guides you on how to install Node.js binary distribution on

various OS.

Download Node.js archive
Download latest version of Node.js installable archive file from Node.js

Downloads. At the time of writing this tutorial, following are the versions

available on different OS.

OS Archive name

Windows node-v0.12.0-x64.msi

Linux node-v0.12.0-linux-x86.tar.gz

Mac node-v0.12.0-darwin-x86.tar.gz

SunOS node-v0.12.0-sunos-x86.tar.gz

http://nodejs.org/download/
http://nodejs.org/download/

Installation on UNIX/Linux/Mac OS X, and

SunOS
Based on your OS architecture, download and extract the archive node-

v0.12.0-osname.tar.gz into /tmp, and then finally move extracted files into

/usr/local/nodejs directory. For example:

$ sudo apt-get install nodejs

Add /usr/local/nodejs/bin to the PATH environment variable.

OS Output

Linux export PATH=/usr/local/nodejs/bin

Mac export PATH=$PATH:/usr/local/nodejs/bin

FreeBSD export PATH=$PATH:/usr/local/nodejs/bin

Installation on Windows
Use the MSI file and follow the prompts to install the Node.js. By default,

the installer uses the Node.js distribution in C:\Program Files\nodejs. The

installer should set the C:\Program Files\nodejs\bin directory in window's

PATH environment variable. Restart any open command prompts for the

change to take effect.

Verify installation: Executing a File
Create a js file named main.js on your machine (Windows or Linux) having

the following code.

/* Hello, World! program in node.js */

console.log("Hello, World!")

Now execute main.js file using Node.js interpreter to see the result:

$ node main.js

If everything is fine with your installation, this should produce the following

result:

Hello, World!

